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using compressible flow theory. The incompressible flow calculations correspond
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seen to affect the peak velocities for each case. The variables most significantly

affecting the peak velocity appear to be the drive ratio and the face width. The
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Chapter 1

INTRODUCTION

Smooth, quiet running gears are desirable in many applications. Much has

been done to identify possible sources of noise in gears. It is recognized that the

gear meshing action is one of the most important sources of noise in high speed

machinery. Meshing noise is generated by the nonuniform transfer of torque

between gears due to geometric defects in tooth profiles, gear shaft vibrations,

and bending of the teeth under load [1]. A considerable amount of work has

been done and is currently in progress to predict and lower the effects of these

sources. Ishida and Matsuda [2] studied the effect of friction noise on gears

by examining pitch circle impulse noise simulated by two disks. The same

authors also studied gear noise due to surface roughness [3]. Fukama et al.[4]

analyzed noise mechanisms of axial and radial vibration in spur gears. Badgley

[5] computed the flow of vibration energy within a gear drive train as a method to

understand the noise problem and the technology needed to alleviate it. Laskin

[61 showed a procedure to predict gear noise by computing the mechanical energy

from the sinusoidal displacement and dynamic tooth force and then determined

the fraction of energy radiated in the form of acoustic energy. These studies have

focused primarily on the physical contact between the meshing gears as a source

of noise. One possible source of noise, which has not been thoroughly analyzed,

is the flow of air and lubricant from between meshing gear teeth. During a high

speed mesh, the time duration of the arc of approach and recession can take on the

order of 100 microseconds. During this cycle, the air and lubricant is compressed

and pumped out at high speeds between the teeth and the ends. See Figure 1.1.

The result of the pumping action is noise and possibly thermal failures. if the
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DRIVER

A IR FLOW AND
LUBRICANT

Figure 1.1 Air and Lubricant Flow. Air and lubricant are compressed
and pumped out from between the teeth
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air velocity between the teeth should reach sonic levels, a shock wave can form

which emanates noise. Drago [1] mentions this problem for high speed gears with

very wide face-widths. Rosen [7] presented air flow noise as part of an overall

examination of gear noise sources. In his report, he computed the velocity of air

flow in spur gears using incompressible flow theory. By drawing curves of the

meshing volume and discharge area with respect to mesh position, he generated

a graphical representation of the velocity, v = Ah/t where A is the dischargeA I

area and dV/dt is the time rate of volume change. His analytical results indicate

the air velocity approaches sonic levels for a particular gear operating at 20,000

RPM and this corresponded to the experimental result of a sudden rise in noise.

Dudley recognized the thermal complications associated with fluid being expelled

between meshing teeth. He attributes overheating failures of gear box and gear

teeth to high-speed air flow between teeth. For high-speed gears, the gear teeth

act like blades on a centrifugal compressor which heat up due to the friction with

the surrounding air. Further heating is caused by the pumping air each time a

gear meshes. Typical thermal failures are softening of teeth, scoring or pitting

due to oil-film breakdown on overheated teeth, local overloading of teeth due to

thermal distortion of tooth-contact pattern, misalignment of gears and bearings

from distortion of the casing, and failure of bearings due to overheating. To

prevent problems of this nature, Dudley recommends not using spur and straight

bevel teeth when the pitch line velocity exceeds 10,000 fpm, because they do

the poorest job of expelling air efficiently. As a guide to designers, he also lists

typical axial meshing velocities for helical gears and the corresponding severity of

thermal problems resulting from air flow [8]. Buckingham [9] notes that excessive

oil at the tooth mesh creates heating problems from the high discharge rate of

oil at the mesh. Smith mentions that noise can occur if oil is trapped in the

roots of meshing spur gear teeth of high face width. If oil cannot escape through
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the ends of the teeth, high pressure develops and it forces the gears apart. The

pressurized oil shoots outward against the gear casing resulting in vibrations [10].

The purpose of this thesis was to assess the magnitude of the fluid velicity

that results from meshing spur gear teeth and to determine whether it reaches

levels capable of causing noise. The fluid velocity was analyzed by assuming one-

dimensional flow and applying incompressible and compressible flow theories.

It is expected that this worlk will form the basis for future experimental and

theoretical analysis of the fluid pumping problem. Eventually, this work should

lead to a better understanding of the hydrodynamics associated with the meshing

action and permit the prediction of conditions causing noise and tooth failures.

Predictive knowledge can aid designers in making more quantified decisions on

choice of geometry and pitch line velocity.

A brief description of the tooth geometry, the meshing action, air flow induced

noise, and formation of a shock wave is given. For gears to run smoothly and

transmit power effectively, the ratio of the angular velocity of the driving gear

compared to the driven must remain constant. The law of gearing states that

the lines of action at every point of contact must pass through the pitch point.

The involute profile is used as a tooth profile because its shape satisfies these

requirements [11]. The in lute profile is generated by unwinding a string from

the circumference of a circle. See Figure 1.2. Definitions for the parts of a gear

tooth are shown in Figure 1.3. The diametral pitch is the number of teeth on

a gear per inch of pitch diameter. The pitch ci:cle diameter is defined by the

number of teeth divided by the diametral pitch. The addendum is the radial

distance from the pitch circle to the top of the gears. The dedendum is the

radial distance from the pitch circle to the bottom land. The base circle is the

point where the involute profile begins.



5

STRING

Figure 1.2 Generation of an Involute. The involute profile is generated
by 'inwinding a taut string from the circumference of a circle.
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Figure 1.3 Spur Gear Teeth Terminology.



7

The meshing action (Figure 1.4) is split into two parts; the approach and

the recession. The arc of approach begins with the initial contact of the driving

gear, T 1 at the tooth tip of the driven, T2 (solid lines). The contact slides up

to the pitch point where the approach ends (dashed lines). The arc of recession

begins at the pitch point (solid lines) and ends when the tip of the driving gear

loses contact with the driven gear (dashed lines). All of the contact points fall

along the pressure line.

Air flow noise results from three sources: monopole, dipole, and quadrupole.

A monopole source occurs when air is interrupted at a regular rate. An example

is a siren. A dipole source is one in which a moving stream strikes a solid object

and a quadrupole source is a result of a gas jet. An example of dipole noise is

the aerodynamic noise generated by fan blades moving th vugh air. Quadrupole

sources o noise arise from a gas jet [121. Gas jet noise is distributed downstream

from the nozzle 'ith high frequencies near the nozzle and lower frequencies

downstream. When the critical pressure for a gas jet is reached, the jet is choked

and a shock formation occurs which is an additional source of noise [13]. The

motion of high speed gears probably gives rise to dipole and quadrupole sources

of noise. The dipole source is a result of the gear teeth acting as blades moving

through air and the quadrupole source is due to the jet stream of air exhausted

from between meshing teeth. Calculations in this thesis have shown that for

particular geometries and pitch line velocities, the jet velocities can reach sonic

levels.

Shock waves represent rapid changes in the velocity and pressure of the flow

and are modeled as a discontinuity [141. Shocks are formed when compression

waves become steeper and form a discontinuity. In the particular case of meshing

gears, when the pressure in the mesh region increases enough for the pressure

ratio, pressuz- inside divided by ambient, to reach the critical ratio the jet
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T2 DRIVEN

S T2T, 2T/

ARC OF T/
APPROACH

,T 2/ T

/ T1

ARC OF
RECESSION

Figure 1.4 Arc of Approach and Recession. The arc of approach and
recession are shown for the driving tooth, T1 , and
the driven tooth, T2 . The solid lines indicate the beginning
of the arc and the dashed lines the end of the arc.



9

becomes choked. The flow expands downstream from the nozzle at supersonic

velocity and a shock is formed outside the nozzle.

Chapter 2 examines incompressible flow for th.e meshing spur gear teeth in

a stationary rack and gear using a one-dimensional flow model. This model is

most appropriate for heavily lubricated gears in which the composition of the

fluid trapped between the gear teeth is the lubrication oil. The assumption of

an ideal fluid allows the fluid to be considered frictionless and incompressible.

The equation for incompressible velocity is derived by applying the continuity

equation to a control volume. The remainder of the chapter explains the

evaluation of the fluid discharge area and the volume.

A representation of the flow problem for air is presented in Chapter 3 which

accounts for the changes in density. This model assumes the gears are lightly

lubricated with the primary discharged fluid being air. Using this assumption,

the velocity was found to be comparable in magnitude with the local speed of

sound. The compressible velocity equation was developed using the First Law of

Thermodynamics in addition to the continuity equation.

The hydrodynamic action of the meshing gear teeth was simulated by a

computer algorithm. These calculations gave information about the following:

fluid velocity at the exit plane and the temperature, density, and pressure in the

tooth space. The results and discussion are given in Chapter 4. An explanation

of the computer algorithm and a block aiagram is presented in the appendix.



Chapter 2

INCGMPRESSIBLE FLOW THEORY

2.1. Introduction

The expressions which describe the time dependent velocity were developed

based on a one-dimensional model in which the fluid was assumed to be friction-

less and incompressible. Thus, only the continuity equation and expressions for

the relevant geometric parameters are required. The model is based on a control

volume defined by the surfaces of the gear teeth and the flow area at the ends of

the gears and the flow area defined by the tip of the engaging tooth and the face

of the corresponding tooth on the driven gear. The analysis began at the angle

of approach when contact first occurs. This approach assumed no flow occurred

before contact. This derivation is appropriate for a stationary rack and gear

and also for a stationary ring and gear. However, for two rotating spur gears an

additional tangential velocity term for the angular rotation of the control volume

should be accounted for by the vector, rw, where r is the pitch radius and W is

the angular velocity.

2.2. Velocity Equation

The velocity equation was derived by first obtaining expressions for the

control volume geometry and then applying the continuity equation to solve

for the fluid velocity.

2.2.1. Control Volume

As the driving gear tooth contacts a pinion tooth, a control volume is formed.

For the calculations, the driven gear was considered the pinion and the driver the

gear. The control surface is described by the boundaries of the involute profiles

of two adjacent pinion teeth, their bottom land, and the profile of the meshing
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gear tooth and the discharge exit area. See Figure 2.1. Note that the control

volume has a variable geometry. The main effort in solving for the velocity was

to obtain an expression for the volume and flow area as a function of the relative

angular position of the meshing gear and pinion teeth.

2.2.2. Continuity

The integral form of the continuity equation states that the time rate of

increase of mass in the control volume is equal to the net rate of mass inflow or

outflow to the control volume.

a ( p = J- pv-, , dS, (2.1)

where p is the density, V is the volume, V" is the velocity relative to the

exit plane of the control volume, S is the surface area, and n is a unit vector

normal to the surface. Assuming one-dimensional flow, an incompressible fluid

of constant density, p, and flow through a discharge area, A, gives

pd = pvr dA. (2.2)

Canceling p and evaluating the integral gives

dV
- vrA. (2.3)

dt

Solving for the relative velocity gives

ldV
Vr- - - (2.4)

Using the chain rule gives

1 dV dO
Vr - A dO d, (2.5)
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Figure 2.1 Control Volume. A control volume is formed as the driving tooth
contacts the driven tooth.
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where d-V/dO is the change in volume with respect to position and dO/dt is

the time rate of change in position. Defining the angular velocity of the gear,

w = dO/dt, and substituting into equation 2.5 results in

'dv
Vr- A dO W. (2.6)

Dividing both sides by the pitch line velocity, w X rpitch, gives

Vr1 dV
Or = . (2.7)

w x rpitch A X rpitch dO

This represents the dimensionless velocity escaping through a discharge area, A.

2.3. Geometric Parameters

The two geometric parameters, A and dV/dO, depend on the geometry of

the gears and the position in the mesh cycle. The discharge area, A, was chosen

to have three possible values depending on the path of air flow: area between

teeth, end flow area, and combined flow area. The rate of volume change, dV/dO,

was calculated using a numerical derivative of equation 2.10. The values for the

volume as a function of 0 were determined from a 2-D plane area which was

then multiplied by the face width to give a volume. Figure 2.2 summarizes the

variables of the gear geometry used to calculate the discharge area and volume.

2.3.1. Discharge Area

Air escapes from the meshing region by two paths. One path is the direct

discharge between the meshing teeth. The other is flow out the ends of the gear.

See Figure 2.3. The amount of flow through either path depends on the tooth

height and the face width of the gear. In the case of wide gears, the discharge

area between the teeth dominates flow. When the face width is narrow, end flow

dominates. A combination flow rcsults for intcrmcdiate face width gears.
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Figure 2.2 Driving Gear Tooth Geometry.
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Figure 2.3 Flow Paths for Discharged fiuid. Air escapes either through

the ends or between the the teeth.
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To determine the area for discharge between the meshing teeth, the shortest

chord distance between the meshing teeth is calculated and the back!ash amount

is added to the chord length. During the approach, chord2 is defined as the

distance between the involute surface of the upper pinion tooth and the near part

of the tip of the engaging gear tooth (trailing edge involute, rinV2). See Figure

2.4. Thus, the area between the teeth for flow is (backlash + chord2) X

face width. This is not precisely true near the end of the mesh cycle because

the involute portion of the tooth is closer to the meshing tooth than the tip, but

at that time in the mesh the chord is closed off and the distance is reasonably

represented by the backlash amount. The backlash is the amount the teeth are

cut thinner than the theoretical dimensions. The backlash accommodates any

expansion of the teeth due to temperature effects.

The end flow area for one end equals the control volume divided by the face

width. The total end flow area is twice the single end area and is given by

total end area = 2 x (volume/ face width). (2.8)

The combined area was chosen to be the sum of the area between the meshing

teeth and the end flow with a factor related to the tooth height and face width.

The combined area is given by

combined area = between teeth + (end area x f) (tace width )2

(2.9)

where f is the percentage of end area used. This equation was chosen as a

possible representation of the distribution. It is based on the idea that the fluid

will tend to seek the shortest path of least resistance. Using the ratio of the

tooth height to the face width resembles the length of path the fluid may travel.
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Figure 2.4 Chord Between the Teeth. The shortest chord length between

the teeth was used to calculate the discharge area

between the teeth.
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2.3.2. Volume

The rate of volume change with respect to position, 0, was calculated by

taking a numerical derivative of equation 2.10. The volume was described

previously as being bounded by two pinion teeth and the meshing gear tooth.

The volume was calculated by multiplying the two-dimensional plane area, Figure

2.5, by the constant face width of the gear.

volume = (2- D planearea) x face width. (2.10)

The 2 - D planearea is the sum of the area between two pinion teeth, Barea,

minus the area overlapped by the meshing gear tooth, overlaParea, and minus

the section no longer part of the control volume, excludedarea. A description

follows for each component of the 2 - D area.

2 - D planearea = Barea - overlaparea - excludedarea. (2.11)

The area between two pinion teeth is

Barean- Ir (rap)2 - 7r (rdp)2 - N X tootharea (2.12)

where N is the number of teeth and the area of a pinion tooth is given by

equation 2.13. Figure 2.6 gives a description of the limits for the tooth area

calculation.

trbp r
ap trbp 

T
bp

tootharea [ ifIr dr dO + j1 Jrdr dO
o Tbp 0 rp (2.13)

Ep rap

-2J J rdrdb,
0 ri

where trbg is the thickness in radians of the tooth at the base circle of the

pinion, rtinv is an approximation for an involute radius, and EP represents the



OVERLA~P AREA

DRIVING r INVOLUTE TRAILING

Z2-D PLANE AREA

r INVOLUJTE LEADING EDGE

Figure 2.5 2-D Plane arez.. The volume was determined by multiplying, the
2-D plane area by the gear face width.
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t: r bp r bp

Figure 2.6 Area of a Pinion Tooth. Description of angles and radii used
to calculate the area of a pinion tooih.
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arc in radians from the beginning of the tooth profile at the base circle to the

tooth tip [9].

2 rb p

Evaluating the integrals for tootharea gives

1 2 1 2
tootharea =2(rap - rbp)trbp + 2 - rdp)trbp

2 2 3 23 2/1 X 5/3

-- [rapE p - rE +33 (2.15)

+ 3X 34/3 x /3

28 x )].
The area overlapped by the meshing gear tooth, overlaparea, is approx-

imated by integrating the area of the gear tooth profile inside the addendum

of the pinion. The integrals used depended on the location of the driving gear

tooth centerline with respect to the x-axis and whether or not the base circle

radius of the gear overlapped the addendum circle of the pinion. See Figure 2.7.

If the base circle radius overlapped the pinion addenidum during the mesh, four

sets of integrals resulted: Sets 1 through 4. In the case of the base circle of the

gear not over] _i- the addendum circle of the pinion, only two sets of integrals

resulted: Sets 5 and 6. For the calculation of overlaparea, approximations for

the involute profile of the gear and the equation of the pinion addendum circle

were developed.

The involute profiles for the driving gear tooth are the leading side rin,,

and the trailing side, rinv2 see Figure 2.3. The profiles were approximated as

rinv- ! rbg(1 + 1(30)2/3) (2.16)
2

and

rinv2= rbg(1 + -(3(trbg _ 0))2/3. 17)
2
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/ _ PINION

ADNDENDUMI~ I cRC LE
BASE CIRCLE I

Base circle overlaps addendum. When the base circle of the gear
falls inside the addendum of the pinion, four sets of area integrals are
required.

PINION
ADDENDUM

BASE CIRCLE CIRCLE
RADIUS

Base circle outside of addendum. When the base circle of the gear
remains outside of the pinion addendum, two sets of area integrals are
required.

Figure 2.7 Determining Integral Sets.
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I NVOLUTE
PROF ILE

Figure 2.8 Involute Profiles. The involute profile approximaations, 7*mnvl
and riv2 and angle .



24

The approximations were developed using Buckingham's [9] vector representation

of 0. See Figure 2.8.

2 r2
= - arctan . (2.18)

rbg rbg

Defining r2 = 1i/rbg gives

- arctan , - 1. (2.19)

Expressing arctan V - 1 as an infinite series and eliminating higher order

terms gives

3 )3 (2.20)

and solving for t gives

rinvi= rbg(1 + (30)2/ 3 )1/2. (2.21)

A binomial expansion and elimination of higher order terms allows even a more

convenient form for integrations.

rinv= = rbg(1 + 1(3 0)2/3). (2.22)

2

A comparison of the actual involute to the approximation for one set of gears is

given in Figure 2.9. The other limit of integration,rp, n is the addendum of the

pinion with respect to the origin of the gear. It is derived in Figure 2.10 by using

a coordinate transformation.

rpin = (rpg + rpp) cos 0 - rap (rpg + rpp) sin 2 0. (2.23)

The positions of the gear tooth centerline where 0 is defined from the x -

axis for the beginning and end points for each set of integrals were designated

rc-pectivcly as start1 and Stop, for Set 1 and ctart2 and stop2 for Set 2 etc.

When the angle of the centerline of the gear tooth falls between angle start1
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y

rQQ Xr +r 0

Figure 2.10 Addendum of the Pinion. The addenidum of the pinion,
r~, using a coordinate transformation with respect to
the center of 'lie driving gear, (0,0).
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and stop, integral Set 1 is used. The overlap was calculated by first integrating

the complcte area under the tooth profile and then subtracting the area under

the pinion addendum curve. The tooth profile uses a local coordinate system for

the angle integration do and the pinion addendum uses a global system do. See

Figure 2.11 for details.

The beginning of Set 1 occurs when the tooth tip of the leading edge contacts

the addendum circle of pinion.
[2 22]_ _ tag

start1 = arccos[rap - + (2.24)
-2rag(rpg + rpp) 2 rag

where t,, is the thickness of the gear at the addendum circle. Stop, ends the

set when the trailing edge involute enters addendum circle. Figure 2.12 gives

details of angles.
tng

stop1 = start1 - tag (2.25)rag

The integrals for Set 1 are

C-X D-X rag D rpin

OverlaParea = + f f rdr do- f f do,
B-X 0 C-X o B o

(2.26)

where angle X is from the Zaxii to the leading edge of the gear, angle B is the

point on the involute profile that intersects the addendum of the pinion, angle

C is the end of the involute profile and angle D is the point of intersection for

the two addendum circles.

Evaluating each integral over its limits gives:

C-X ri.1

S ] rdrdo r [(C - X) - (B- X)
f f 2 bg

B-X 0

+ - x 2/3 x (C - X)/ 3/ - (B - X) 11) (2.27)
5

+ 3 X 3 4/3 X ((C - X)7/3 - (B - X)7 3 )1
28
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y
de

dO

Figure 2.11 Local and Global Angles. The angle 0 measures

from the x-axis and the angle A begins at the edge of the tooth.
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The beinnig of Set 1 occurs when thetooth tip of the leading edge contacts the

SLEADING 
IING E DG

addendum of the pinionTRIIGEE

Set end whe th tralingedg

x

Th ein fSet I occur when thetringee
iolt t the ad d e n ta ts th

SAMPLE INTEGRAL FOR SET 1

Figure 2.12 Integral Set 1.
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and

D-X rg

D --X r drdo = _2r., [(D - X ) - (C - X )] (2.28)

C-X 0

and

D rpi

D r drdO= -(sin 2D - sin 2B)(rpg + rpp)2 + r2p(D - B)

B o
2(rp, + rpp)rap

[1sin D( -(gr+rPP) 2sin2D

rap 
(2.29)

-1sinB rpg +rpp )sin 2 B
1 rrap
1 rap (arcsin ((rp, +rpp) sin D)
2 rpg + rpp rap

rap

The beginning of Set 2 is at the end of Set 1.

start2 = stop1 . (2.30)

Stop 2 occurs when the base circle at the leading edge of involute enters the

addendum of pinion. See Figure 2.13.
r2_-- ]rp +lp ) tagstops = arccos[r a r~q - (rpg + rbg) 2 + _ta + Eg. (2.31)

L -2rby(rpg + rpp) 2 rag

The integrals for Set 2

C-X 'ri vi F-X rag

overlaParea = + f J rdrd + / f r dr d
B-X 0 CX 0 (2.32)

G-X rn G 'ryin+ f / rdrdO-J f rdrdO,

F-X 0 B 0
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r

The beginning of Set 2 occurs X
at the end of Set i

BASE CIRCLE-

Set 2 ends when the base
circle enters the addendum of
the pinion, rap

SAMPLE INTEGRAL FOR SET 2

Iigure 2.13 Integral Set 2.
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where angles X, B, & C are as defined for Set 1 and angle F is from the

z - azis to the start of the trailing edge involute and angle G is the intersection

point for the trailing edge involute and the addendum circle of the pinion.

Evaluating each integral over its limits gives

J J rni dr do =r 2[(C -X) -(B -X)j 1~ 2 b

B-X 0

+ - X 2/3 x ((C - X)'13 - (B - X) 5/3 ) (2.33)

53 3/

S x ((C- X) /  (B- X)7'/3)]
28

and

F-X rag
rdrd r2g[(F- X) - (C- X)] (2.34)

C-X 0

and

G-X rinW2

] J rdr do= 2 r[(trbg - (G - X)) - (trbg - (F - X))
F-X 0

+ - X 32/3 x ((trbg - (G - X))513
5

- (trbg - (F- X))- / 3 )

+ X 3 4/3 X ((trb, - (G _ X)) 7/ 3

28

(trbg - (F- X))7(3). (2.35)
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and

rdrdO = (sin2G-sin2B)(rpg +rpp) 2 +r2P(G -B)1 2a
B 0

- 2(rp, + rpp)rap

[s inG 1 /- (rpg + rPp) 2 sin2 G
rap (2.36)

1 si (rp + rpp)2 .2B
2 raprp ( r¢ n(p, + rpp) iG

S a p (arcsin((.-. +
2 rap

-arcsifl(rp +P)sinB)]

Set 3 starts with the end of Set 2.

atart3 = 8top 2. (2.37)

Stop3 occurs when the base circle at the trailing edge of involute enters the

addendum of pinion. See Figure 2.14.

stop 3 = start3 - trbg. (2.38)

where trb, is the thickness of the gear at the base circle in radians. Set 3 has two

cases for its integral sets. Case one the leading edge of the gear tooth is above
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The beginning of Set 3 occurs X
at the end of Set 2

TRAILING EDGE
INVOLUTE

BASE CIRCLE RADIUS

_x a
Set 3 ends when the base I

circle at the trailing eede involute
enters the addendum circle, rap

X C F G X

SA PLE INTEGRAL FOR SET 3 CASE I

The edge of the tooth is above
the x-axis

SA.MPLE INTEGRAL FOR SET 3 CASE 2

The edge of the tooth is below
the x-axis

Figure 2.14 Integral Set 3.
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the x-axis and Case two it is below the x-axis. The integrals for calculation are

C-X r F-X rrag

overlaParea = f rdr do + ] f r dr do
0 0 C-X 0

G-X ri-.12
G -X o+ f J rdrdS

case one (2.39)
G rti,

X 0

case two
a rpin 0 rpi-J J r dr d -J J rdr d9,
o 0 X 0

where angles X, C, F, & G have been defined previously. Evaluating each of

the integrals gives

C-X rin.1

J dr do r 2r 9 [(C _ X) + 3 32/3 X ((C-X)513)
0 0 2(2.40)

+ - X 4/3 x ((C- X)7/ 3

28

F-X

C-X 0
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G-X rin,2

f f r dr d 2 bg, [rb - (G - X)) - (trbg - ( )

F-X 0
+ 2/3 X - X ((trbg - (G - X)) 51 3

5

- (trbg - (F - X))5 1 3 )

3 34/

+ - X 3 /3 X ((trbg - (G - X))7/3_

28

(trbg - (F -X))7/3)]

G rptfr r (2.42)

Srdr dO = -(sin 2G - sin 2X)(rpg + rpp) 2 + r2 p(G - X)

x 0
- 2(rpg + rpp)rap

jsiG/ rap _ __(2.43)

1 G (rpg + rPP) 2 sin2 X
-- sinX 1 ( sin 2 X

2rap

1 rap rp + rPP) sinG

2 rpg + rpp siG

-arcs;n ((rPg + rPP) sin X))]
rap

G rpin

I rdrdO = (-(sin2G)(rpg + rpp)2 +r 2p(G)
J f 2a
0 0

- 2(rpg + rpp)rap

- sinG - rPP)2sinl2 Gr(.4
ra -

+1: rap (arcsin((p +rppsin G))]
2 rpg + rpp rap
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0 'pintJ J rdr dO 2 -(sin2X)(rp 9 + rpp - rap(X)
X 0

+ 2(rpg + rpp)rap

-(rpg + rpp)2 2 X (2.45)
sin) sin2

12 V rap
I rap (acsinL ((p iX))]2 r p + rpp rap

Set 4 starts at the end of Set 3.

start4 = stop3 . (2.46)

Set 4 stops when the centerline of the gear tooth reaches the x-axis. See Figure

2.15.

Stop 4 = 0.0. (2.47)

The integrals are

C-X r F-X rag

overlaparea = f f r dr d + f fr dr do
o 0 C-X o

H-X ri.2 H rpi

+ J f rdrdo -f f rdrdi (2.48)

F-X 0 0 0
0 rpin*

-J f rdrdO,
x o

where angles X, C, & F have been defined previously and angle H is the angles

from the x - axis to the trailing edge of the driving tooth. Evaluating each

integral over its limits gives

X rIi r dr do =2 (C - X) +32/3 x - x ((C- X)5 / 3)
05 (2.49)

0 0

+ - x 34x ((C- X) 7 3

28
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The beginnin of Set 4 occurs
at the end of Set 3

r ap

Set 4 ends when the centerline
of the tooth coincides with the x-axis

rap

X C \-

SAMPLE INTEGRAL FOR SET 4

Figure 2.15 Integral Set 4.
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F-X r1gJ rdrdo r2 g[(F - X) - (C - X)] (2.50)
C-x o

H-X ri..2

] J rdrdk 2 rbg[(tri, - (H -X)) - (trbg -(F - X))
F-X o

3
+32/3 x - x ((trbg - (H - X))51 3

5
- (trbg - (F- X))11 3 )

3 3/

+ - x 34/3x ((trbg - (H_ X))7 / 3
+28

-(trbg -(F- X))7/3)

(2.51)H rpi

f I rdrdO = -(sin 2H)(rpg + rpp) 2 + r2 (H)
f f 2a
0 0

- 2(rpg + rpp)rap
sinH I rP+ rPP)2 sin2 H (2.52)

2  rap

+ rap___ _n (,rpg + r p p sn H))]
2 rp9B + r p rap

0 rpin

J f r dr dO = -1(sin2X)(rpg + rpp)- rap(X)J J 2
X o

+ 2(rpg + rpp)rap

r,+r~'2 (2.53)[I sin Xy I (g rpp ) 2sin 2 X
12 rap

1 rp(pg+ rp
+ - rap (arcsin((rP pp)sin X))].

2 rpg + rpp rap

When the base circle of the gear does not overlap the pinion addendum only

two sets of integrals result: Sets 5 and 6. Set 5 begins when the leading edge of
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the tooth tip enters the addendum circle of the pinion. See Figure 2.16.

ap _ g P ) 2 1 tg
starts - arccos[P .. . ...pg + (2.54)I -2rag(rpg + rpp) I 2 rag

Set 5 ends when the trailing edge involute enters the addendum of the pinion.

lag
stops = starts - tag (2.55)rag

T-R r lU-Rre

overlaparea= f J rdrdo¢+ J r dr do

S-R 0 T-R 0 (2.56)
U rpin

S o

where angle R is from the x-axis to the leading edge of the driving tooth, angle

S to the intersection of the leading involute profile and the addendum of the

pinion, angle T to the end of leading profile, angle V to the beginning of the

trailing edge profile, and angle W to the intersection of the trailing edge profile

and the addendum circle of the pinion. Evaluating each integral gives

T - R r,,,,,,1

J J rdr do =r[(T -R) -(S -R)2bg

S-R 0
+ 3 2/ 3 x 3 x ((T - R )5/ 3 - (S - R) 5/ 3)  (.7

5
+ 34/3 ((T- R) 7/ 3 -(S - )7/)

28

U- R ragJ Jrdrdo 1 r 2 U- R)-(T - R)] (2.58)
f 02agT-R 0
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The beginniing of Set 5 occurs
when the tooth tip contacts the
addendum of the pinion, rap

ZTRAILING 
EDGEr

STOP

Set 5 ends when the trailing
edoe involute enters the addendum
circle, r a

SAiMPLE INTEGRAL FOR SET 5

Figure 2.16 Integral Set 5.
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U tp~R
U r dr dO = -(sin 2U - sin 2S)(rpg + rpp)2 + r2 P(U - S)

J J 2a
s o

- 2(rpg + rpp)rap

[!sin U/ (r., + rpp) 2 sin 2 U
2r P(2 . 9 )

1 lsinS 1 (rpg + rpp)2 sin2 
S

2 rap
1 rap _ arcs , + - rpp )sin

2 r pg + rp., ra2rg+rp, + r rap

-arcsin(( rap - ~) sin S))].rap

The beginning of Set 6 starts at the end of Set 5.

start6 = stops. (2.60)

Set 6 ends when the centerline of the gear coincides with the x-axis. See Figure

2.17.

stope = 0.0 . (2.61)
T-R ri.vi V-R rag

overlaparea =f J r dr do~ f f r dr do
S-R 0 T-R o
W-R rilU 2

+wfR J r dr do
V-R 0

for case one W rdrd (2.62)

R 0
for case two

W rpin 0 rpin

-f J drdO -J f
0 0 R 0
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Set 6 begins at the end of Set 5 STAR*T6

Set 6 ends when the
centerline of the -' zoth coincides
with the x-axis

SAMPLE INTEGRAL FOR SET 6 CASE 1

The edge of the tooth is above
the X-axis

Wrap

SAMPLE INTEGRAL FOR SET 6 CASE 2

The edge of the tooth is below
the x-axis

Figure 2.17 Integral Set 6.
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Evaluating each integral gives

T-R r1 ,v

J f r dr do b ,[(T -R) -(S -R)
S-R 0

3 32/3 5/ /)(2.63)

+ - x x ((T- R) - (S - R) / )
5

+ 3 34/3 x ((T - R) '1/3- (S - R)7/3)]+28

V- R rag

r frdrdo= r2 [(V - R) - (T- R)] (2.64)

T-R o

W-R ri, v2J drdo = " [(trb, - (W - R)) - (trbg - (V - R))
V-R 0

3 3X3
+ - X 3 x ((trbg - (W- R))

5
- (trbg - (V - R))s-/ )

3 3/

+ - X 34/3 x ((trbg -(W -R))
7/

28

- (trbg- (V - R))7/3)
(2.65)

J ] rdrdO =(sin2W - sin2R)(rpg + rpp) 2 + r2p(W -R)

R 0
2(rpg + rpp)rap

[! sin +i( ) sin2 W
rap (2.66)

1 sin R - (r1pr + rPP)2 sin2 R
2 rap

__.1 rap (arcsin (( rr+ )sinW
2 rpg + ppap

" arcsn((rp,+rpP)sinR))]-- rcsn rap
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JJ rr dr dO =!(sin2W) (rp + r) 2 + r2P(W)

0 0

- 2(rp, + rpp)rap

I sin W I- (rg + rp)sinWp (2.67)

(arcsin ( r p + rpp)sinW))]

0 r12V drO -(i2'rrp)-ap ,
2(rpg + rpp rap

r dr dO (sin 2R) (rg +r) 2 _ r 22(R)

+ 2(rp, + rpp)rap

1 iR 1 (rpg + rp .2 si'R(2.68)
2 rap

+1 rap (arcs/( rpg +rpp )snR)
2 rpg +- rp rapi

The area subtracted from the space between two pinion teeth is derived from

the discharge area and is designated as the excludedae, . When the chord

length along the disharge area is known, the area from the exit plane out to the

addendum of the pinion can be calculated. The area above the pinion involute

profile can also be calculated. See Figure 2.18. At the point in the meshing

cycle when the tooth tip of the driving gear is no longer the closest point to the

driven tooth (see chord 2 description), another approximation is used to compute

the excluded area. A cubic equation is fit using the last area calculated and an

estimation of the final value. The integrals are

pC r Ep rcLp

excludedar J f r dr do/ + J J r dr d
0 PL P7  0 (2.69)

EP ri..,

-f J
P, 0
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Figre .18Excluded Ar.Cacltoofteraexuddro
thE cntrlvoue
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Evaluating each integral gives
, 'ap 2 p (2.70)

f frdrdO= 2 rap PL)

o PL

EP rdrdO = r2 p(EpPi) (2.71)f ~ 2 a

p, 0

E p 1n lI J 3 x / E 5 3 p 5 / 3 )

I r dr dO P - P7) + 5 (2.72)
38 4

+ - x~/ x (; -p3

The total plane area subtracted equals

1 
2exludedare 2 9 p L

P (Ep- P7)

I((Ep- P) (2.73)

2
S 32/3 3( p513)

+-I x S -5 -

+ 3 X 343X (E73--773]
28 

p

This chapter has presented a method of solution of incompressible flow of

air between spur gear teth. Through the use of assumptions, a numerical

representation of the change in discharge area and change in volume were given.



Chapter 3

COMPRESSIBLE FLOW THEORY

3.1. Introduction

By taking into account density changes, an approximation of the velocity

for a perfect gas resulting from the meshing of a gear and stationary rack was

developed. To develop the velocity equation, the First Law of Thermodynamics

was applied to relate the fluid properties along a streamline from inside the

control volume, where the velocity is assumed to be low, to the exit plane. To

determine the pressure relationship, the continuity equation was applied to the

control volume.

An ideal gas and one-dimensional flow model with constant entropy and

adiabatic flow was assumed. This gives constant properties for the velocity,

pressure, density, and temperature across the flow area. The assumption of

constant entropy, ds = 0, allows any thermodynamic variable to be found in

terms of any other thermodynamic variable. Isentropic flow can be assumed

because friction effects are small over the short distance of accelerating flow and

heat transfer is small because of the short time intervals. The analysis began at

the angle of approach when contact first cccurs between the driving and driven

teeth. Before contact occurred, it was assumed that the pressure inside the

control volume was the same as the ambient and no flow occurred. The discharge

area evaluation and the volume are the same as the incompressible case and were

described in Chapter 2.

3.2. Velocity Equation

Applying the First Law of Thermodynamics along a streamline gives the

velocity equation. The pressure relationship of the velocity equation is derived
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by applying continuity to the control volume.

3.2.1. Energy Equation

Applying the First Law of Thermodynamics along a streamline for adiabatic

conditions gives
2 2

hi + -!!L = h, + '_a, )(3.1)2gc 2gc

where vi is the velocity inside the control volume, V, is the velocity at the

exit plane, hi and he are the enthalpy inside the control volume and at the

exit plane, gc is a dimensional constant, and cp is the specific heat at constant

pressure. Rewriting the first law with vi = 0 and h = CPT gives

CpT, = CpTe + V; (3.2)
2gc

Solving for the velocity squared at the exit plane gives

= 2gocP(T - Te) (3.3)

2 (
Va = 2gccpTi(1 - ,e). (3.4)2% = Ti

Dividing both sides of the equation by the pitch line velocity, w X rp., and

defining ie = v,/(w X rpg) and t = T/Too results in
-2 2gccpTOO T- ) (3.5)

w - (w rpg)2  Ti

Substituting for Te/T with the isentropic relationship pI-- where P =

Pi/PC and taking the square root of both sides gives

e T2gcc (- p -k)1/2. (3.6)
w X rpg

The pressure variable, P, is evaluated in section 3.2.2. by applying the continuity

equation to the control volume. The temperature, T, is evaluated by using the

isentropic relationship

Ti L) .(3.7)
.ePe-



50

The other relationship can be written as

_Pi k

PC PC (3.8)

3.2.2. Pressure Equation

Writing the continuity equation for the control volume

at dV + pei .dSS o. (3.9)

where Vifr is the relative velocity to the exit plane, pi is the density, V is the

volume, and S is the surface of the control volume. For 'he 1-D case

dd(pjV) + peAvr = 0. (3.10)

Expanding the equation gives

dpi dV
V--t + pi - + peAvr = 0. (3.11)

Multiplying by ' givespiv
i dpi 1 dV p, A

+ V t + --- vr = 0. (3.12)
pidt +Vd Pi V

Using the isentropic case and making substitutions gives

1 1 dP 1 dV fPe\1/kA
kP t-+ -F - + (ie ) V -- O. (3.13)kP dt Vdt P'V

Defining P = P,/P, and substituting gives

1 1 dP i dV p -i/k A (3.14)

k P dt V dt V

Using the chain rule for dP/dt and dV/dt gives

iidPdO 1 dVdO -i/k A
+ d0 - + P 0-V = 0. (3.15)

k P dO dt Vd dt V
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Solving for d.P/dO gives

dP = k + .P(k-1)/k A (3.16)dO V dO V "

The pressure, P in equation 3.16, was solved using the Runge-Kutta fourth order

formula. The step size, AO, was chosen by running the program with a small

step size and then cutting the value in half and running the program again to

compare it to the previous trial step size. When the difference in the results was

small, less than 1O, the step size was set.

Until critical conditions are reached, the conditions at the exit plane must

be equal to the ambient pressure p. = p,, and Pe = Po. The meshing

teeth can be seen to form a converging nozzle. See Figure 3.1. If P. were larger

than Po, the stream would expand laterally upon leaving the nozzle; however,

an increase in area at subsonic speeds would cause the pressure to rise further.

Since P,, is the ultimate pressure reached, Pe cannot be larger than Poo [14].

Once the pressure in the cavity divided by the ambient has reached the critical

ratio, the flow becomes choked and remains at Mach 1.

The compressible velocity, equation 3.6, approximates the condition of lightly

lubricated gears where it can be assumed that the fluid is only air. By using this

equation, it can be determined whether the velocity reaches leveis capable of

producing shocks and causing noise. The true velocity should include the effects

of the exit plane moving inward and be accounted for in the energy equation.

By neglecting it, a difference on the order of 5% is introduced. Also, for two

rotating gears the effect of the rotating control volume should be included in the

energy equation.
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DRIVING
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Figure 3.1 Converging Nozzle. The meshing gear teeth forming a converging
nozzle.



Chapter 4

RESULTS AND DISCUSSION

4.1. Introduction

When the driving gear contacts the driven pinion tooth, fluid begins to flow

out from the volume between the meshing teeth. An estimation of the fluid

velocity relative to the exit plane was obtained by using incompressible and

compressible flow theories. Figures 4.1 thru 4.7 contain incompressible flow

results and Figures 4.8 thru 4.24 have the compressible flow results. Figures

4.25 through 4.27 contain comparisons of incompressible and compressible flow

for each of the assumed discharge areas. The geometric parameters for the

incompressible flow figures are given in Table 1. Table 2 contains the compressible

geometry parameters and Table 3 has the comparison geometries.

It was assumed no flow occurred before the driving tooth contacted the

driven tooth and no thermal expansion of the teeth due to temperature rises.

The percent of mesh axis on the plots indicates the position of the driving

tooth as a percentage of the arc from the initial contact, zero percent mesh,

to full mesh position, 100 percent mesh. The velocity is given as a ratio of

the computed fluid velocity to the pitcl iine velocity. The three discharge areas

for analysis were end flow area, teeth flow area, and combined flow area. The

endflow was chosen to represent the meshing of narrow face width gears. For

this case, the fluid is expected to flow primarily out the end openings of teeth.

'he other extreme is wide face gears. A wide face width should tend to force

the discharged air out between the teeth and was designated teeth flow. The

combined flow uses equation 2.9 to account for a combination of the two flow areas

by using the height of a tooth and the face width. The influence of the geometric

parameters including backlash, diametral pitch, drive ratio, and pressure angle
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were analyzed. Changes were made to these parameters and the corresponding

peak velocities were plotted. When examining the effect of the parameters only

flow between the teeth was plotted because it represents the most significant flow

of fluid and the highest rates. In the compressible flow results, the position at

which the flow reached Mach 1 was noted with respect to changes in the design

parameters. Also, for compressible flow, examination of the temperature and

pressure rises with percentage of mesh angle are shown to give insight to the

thermal conditions in the mesh region.

4.2. Incompressible Flow

An example of the fluid velocities attainable for the lubricant using incom-

pressible flow are shown in Figure 4.1. T'.ie mesh simulation was done with an

identical gear and pinion with 31 teeth ard a diametral pitch of 8.5 teeth per inch,

a pitch line speed of 150 ft/s, a pressure angle of 22 degrees, and a backlash of

.002 inches. The three curves represent flow out the ends, between the teeth, and

combined flow. The highest rate occurs for the teeth flow, Z- 30 corresponding

to a velocity of 4500 ft/s, followed by combined, f) = 13 corresponding to 1950

ft/s, and end flow, V - 5 corresponding to 750 ft/s. The peak in velocity

is reached at 48% of the total mesh cycle for all three flows. The fRow slows

to almost zero at 70% of the mesh. The velocity is represented by equation 2.7,

v/rw = i/A x dV/dO, where A is the discharge area and dV/dO, is the change

in volume with respect to position. From the equation, it is possible to see that

smaller discharge areas and higher volume changes give larger velocities. Tetth

flow gives the highest velocity rates because it presents the smallest discharge

area. The combined area, equation 2.9, is the next smallest area, then finally the

end area, equation 2.3, is the largest area of the three. The likely cause of the

peak occurring at 48% mesh is the area of discharge has reached its minimum
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value while the rate of volume change continues to decrease. The flow slows to

zero near 70% mesh because the change in volume, dV/dO, has become almost

negligible.

The influence of varying the backlash on peak velocity between the teeth

values is shown in Figure 4.2. The backlash was varied from .0005 inches to

.004 inches using the same gear and pinion at a pitch line speed of 150 ft/s.

The backlash value was added to the chord length calculated between the two

meshing teeth. The velocity increases with a decrease in backlash. Similar results

are obtained for other gear geometries. By assuming no expansion of the gear

teeth due to local temperature rises, the flow discharge area between the teeth

can be controlled by varying the backlash. Referring to the velocity equation,.

equation 2.7, it can be seen that as the discharge area decreases, the inverse of

the area increases the velocity. If no backlash existed, the discharge area would

become very small as the teeth approach contact giving infinitely large velocity

before it finally closed and stopped the flow.

A linear curve results for changes in pitch line velocity. A curve of peak

velocity values for pitch line speeds ranging from 100 ft/s to 400 ft/s is shown

in Figure 4.3. Even at low pitch line speeds of 100 ft/s, incompressible theory

predicts high velocities for this geometry. The curve is linear because in the

dimensionless velocity equation, equation 2.7, the velocity is only dependant on

current geometry values therefore changes in pitch line speed do not affect the

dimensionless velocity. Similar results are predicted for other geometries.

The diametral pitch is the number of teeth per inch along the pitch circle.

Pitches less than 16 teeth/inch are designated coarse pitch and those greater

than 20 teeth/inch are fine pitch. The effect of varying diametral pitch from 8.5

teeth/inch to 24 teeth/inch on the peak velocity of discharged air is shown in

Figure 4.4. As the diametral pitch changes from coarse pitch to fine pitch, the
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velocity decreases. This is a result of the volume change, dV/dO, being greater

for coarse pitch gears. The volume change depends on the size of the meshing

tooth entering the space between the teeth. The size of the teeth depends on

the inverse of the diametral pitch. The addendum is 1/P and the dedendum

is 1.25/P so that a smaller diametral pitch results in larger teeth. Changing

the diametral pitch and holding the number of teeth the same does not change

the total mesh angle but does change the diameter of the gears. Therefore over

the same range of motion a larger tooth causes greater changes in the volume

between the teeth for each increment of motion.

By changing the drive ratio between the gear and pinion the effect that the

mating gear size has on the fluid velocity can be seen in Figure 4.5. The driving

gear had 31 teeth with a diametral pitch of 8.5 teeth/inch, a backlash of .002

inches at a pitch line speed of 150 ft/3. The smaller the drive ratio the higher

the air velocity. As the drive ratio increases,( increase the number of mating

gear teeth), the total angle of mesh increases. Since the size of the teeth remain

constant, for a larger drive ratio the meshing tooth causes smaller changes in

volume as it passes through the longer cycle.

The peak velocities for pressure angles 20, 22, and 25 degrees are given in

Figure 4.6. Little variation in peak velocity occurs for the three values. This

is primarily due to the small change in tooth size. Changing the pressure angle

makes the base circle smaller for larger pressure angles. The base circle is given

as rbase -rptch X coS4 where 4 is the pressure angle.

Changing the percentage of flow distributed between the teeth and ends is

given in Figure 4.7. This change increased the discharge area which slowed the

velocity.
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4.3. Compressible Flow

Taking into account the compressibility of air, the meshing action of the

gears compressed and pumped out the air trapped between the meshing teeth.

An example of the velocities for the three flow areas is given in Figure 4.8. An

identical gear and pinion with 31 teeth, 8.5 teeth/inch a backlash of .002 inches

were meshed at a pitch line velocity of 150 ft/s. The rate of the three flows

gradually increased from zero velocity. The position at which sonic velocities

are reached can be seen by the abrupt change in the velocity curve. The flow

between the teeth was the first to reach Mach 1 at 35% of the mesh cycle. The

combined flow eventually reached Mach 1 at 47% of the mesh cycle and the

endflow did not reach Mach 1. The flow between the teeth gives the highest

velocity, j = 8.3 which corresponds to 1245 ft/s, followed by combined flow,

ii = 8 which corresponds to 1200 ft/s, and end flow, f; = 6 which corresponds

to 900 ft/s. As the mesh begins, the pressure change inside the tooth space

increases. Once Mach 1 is reached, the flow is choked and remains at Mach 1.

Any changes in velocity are due to a local temperature rise. The difference in

flow velocity between the three assumed areas can be attributed to the difference

in discharge areas. A wide set of gears would have the highest velocities because

the flow tends to move out between the teeth instead of the ends.

For the same set of gears and a pitch line speed of 150 ft/s, the effect of

changing the backlash from .0005 inches to .004 inches is shown in Figure 4.9.

Figure 4.10 gives the percent of mesh when the air velocity reaches sonic levels.

As expected, the smaller backlash allows the velocity to reach sonic levels sooner.

Changing the driven gear to 63 teeth and keeping the pitch line velocity at

150 ft/s results in subsonic flow throughout the mesh cycle. Figure 4.11 gives

subsonic results for changing backlash. The effects for compressible flow are not
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as dramatic as the incompressible results, Figure 4.2, this is due to one part of

the pressure term, P/V dV/dO, being more dominant in equation 3.16.

For a 31 teeth driver and a 63 teeth driven gear with a diametral pitch of

8.5 teeth/inch, the geometry does not produce sonic velocity levels for changes

in pitch line velocity. The effect is seen in Figure 4.12. As the pitch line velocity

increases, the resulting velocity and begins to level off near 1100 ft/s for pitch

line velocities greater than 350 ft/s. The rnon 'inear response of the peak velocity

is due to the non-linear pressure rise and the power in the velocity equation.

A sonic case is given in Figure 4.13, the corresponding position at which sonic

was reached is in Figure 4.14. The pressure rise is seen in Figure 4.15. From the

pressure curve, it can be seen that the velocity follows the same form.

The effect of varying the drive ratio by changing the number of teeth in the

driven gear is shown in Figure 4.16. For large drive ratios, the air velocity is

slower. The effect of drive ratio on the position (% mesh) when the air reaches

sonic is given in Figure 4.17. The effect is primarily due to the longer approach

associated with a larger drive ratio. The longer approach reduces the volume

changes with respect to position.

Fixing the number of teeth at 31 and changing the diametral pitch from

8.5 teeth/inch to 24 teeth/inch gave the velocities shown in Figure 4.18. The

effect of changing the diametral pitch on position sonic is given in Figure 4.19.

The smaller the diametral pitch the sooner it reaches sonic. Subsonic geometry

results for changing dianietral pitch are shown in Figure 4.20. When keeping the

number of teeth constant, the diametral pitch does not change the total angle

of approach, but does change the diameter of the gear. This means that for the

same angle of approach the difference in velocities is primarily due to the change

in the volume with respect to position, dV/dO. The major factor affecting the

change in volume is the size of the meshing tooth. The tooth size varies inversely
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with the diametral pitch. Smaller diametral pitches result in larger teeth which

cause greater changes in volume for each incremental step.

The effect of changing the pressure angle from 20 to 22 and then 25 degrees

gives the result in Figure 4.21. A slight variation occurs due to the small change

in tooth size for changing pressure angle.

A typical pressure variation for the three flows, end, teeth and combined,

is given in Figure 4.22. The pressure peaks correspond to the peak velocity

position.

Changing the flow distribution by making the endflow area account for a

larger percentage of the total discb.rge area is given in Figure 4.23. As expected,

as greater percentages of the end area are added the discharge area increases and

results in a decrease in peak velocity.

The temperature changes inside the meshing region of the teeth for the three

flow areas is seen in Figure 4.24. Starting at the ambient temperature, 80 F,

the end flow temperature problem rises to 150 F, the teeth flow to 350 F, and

the combined flow problem to 220 F. The energy generated must be dissipated.

A portion of the energy is dissipated in the air-oil mix and the other portion is

absorbed by the gear teeth. If too much energy is absorbed by the teeth thermal

distortion results.

4.4. Comparison of Incompressible and Compressible Flow

Using identical gear and pinion of 31 teeth and 8.5 teeth/inch diametral pitch,

the velocities for incompressible and compressible flow were compared for each

of the assumed discharge flow areas at a pitch line speed of 150 ft/s.

Comparing the end flow in Figure 4.25, the incompressible reaches its peak

at 48% of the mesh cycle. The compressible flow case reaches a peak at

approximately 60 % of the mesh cycle while both have approximately the same
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peak value. The delay in the compressible peak occurs because of the compressing

of the air and the gradual rise in pressure. Comparing the flow between the teeth,

Figure 4.26, the incompressible peaks at 0 = 30 and the compressible reaches

Mach 1 at 35 % of the mesh cycle. A direct comparison of peak velocities

for incompressible and compressible flow is not meaningful because once the

compressible velocity reaches Mach 1 it is choked and remains at Mach 1.

Comparing the combined flow in Figure 4.27 the incompressible is again

higher and the compressible reaches sonic levels at 43 degrees.

4.5. Conclusions

A one-dimensional approximation of the air oil flow resulting from the mesh-

ing of spur gear teeth indicates the velocity reaches high rates. Incompressible

theory predicts oil velocities as high as 4500 ft/s depending on the pitch line

speed. Using compressible flow theory, some geometries produce air velocities

high enough to approach and reach the speed of sound, Mach 1, at the exit

plane. If the velocity reaches Mach 1, the conditions may lead to the formation

of a shock wave downstream of the exit plane. Should a shock wave form, noise

is emanated which contributes to the overall noise of the gear mesh.

Since the velocities were shown to depend on a number of different design

parameters-diametral pitch, backlash, pitch line velocity, pressure angle, drive

ratio, and face width-further analysir should be conducted to quantify their

exact effect. This thesis has shown the parameters most signifiLantly affecting

the air velocity appear to be the drive ratio and the face width.

Further considerations of this problem should include an experimental

analysis of the fluid flow. Also, an expansion of the analytical portion of the

problem should include two and three dimensions to determine the flow pattern

for diffcrcnt width gcars. The inclusion of the effects two rotating teeth have on
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the velocity, the effect of the moving exit plane, and a mixture of air-oil mist

velocity would make the problem closer to the actual system.
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APPENDIX

COMPUTER ALGORITHM GUIDE AND A FLOW CHART

1. PROGRAM EXPLANATION

The computer algorithm approximates the velocity for flow between meshing

gear teeth by assuming incompressible and compressible flow theories. For each

case, three flow areas were used: end flow, teeth flow, and combined flow. The

program was written in Fortran 'i T on the Data General Eclipse system. It is run

interactively by specifying the data file and the output listfile.

2. MAIN PROGRAM

The main program reads and echoes the input information. The driven

teeth were Lonsidered the pinion and the gear was the driver. The first

subroutine called is SUBROUTINE GEOCAL, which computes the gear and

pinion geometry. For the chosen set of gear geometries, the intial contact

(starting position gear tooth centerline) is computed. The centerline position

is incremented in a DO LOOP by the chosen step size. The program stops when

full mesh position is reached.

The subroutine to compute the incompressible velocity is SUBROUTINE

INCOMPRESSIBLE. The value for the gear centerline position, its absolute

value, and the step size is transferred to the subroutine. Values for the three

flow area velocities are returned.

For compressible flow computations, SUBROUTINE COMPRESSIBLE is

called to compute the pressure, velocity, temperature, and Mach # for each of

the three flow areas. The position of the gear centerline and the size of the step

are sent into the subroutine.
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The computed values are written to the listfile (default unit=12) at the

desired frequency controlled through the input file. The position at which Mach 1

is reached is also written onto the listfile.

3. SUBROUTINE AREA

This subroutine is called by SUBROUTINES INCOMPRESSIBLE and

COMPRESSIBLE, it computes the area between the meshing teeth, AIR2,

by first determining the chord length between the teeth, CHORD2, and then

multiplying by the constant face width. The chord is computed by locating the

trailing tip of the driving tooth and computing the arc to the driven tooth. The

backlash amount is added in the incompressible and compressible subroutines.

4. SUBROUTINE GEOCAL

This subroutine uses the standard AGMA and USASI tooth systems for spur

gears. The computed radii and tooth widths are written to the output listfile.

5. SUBROUTLNE DERIVATIVE

This subroutine computes the change in volume with respect to position,

dV/dO. It uses the forward difference method for the derivative at the starting

position and the remaining derivatives are computed by the central difference

method. It calls the SUBROUTINE VOLUME.

6. SUBROUTINE COMPRESSIBLE

This subroutine computes the pressure, temperature, velocity, and Mach

number for the three flow areas by assuming compressible flow. It is appropriate

for lightly lubricated gears where the primary discharged fluid is air. It uses the

Runge-Kutta fourth order formula to solve the change in pressure with respect
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to position, dP/dO. The subroutine calls SUBROUTINE RHS to compute the

intermediate values of the function for the Runge-Kutta method, The formula is

11 ,

Yj+i = Yj + At[-f(Yj,t ) + 3 f(Y*+,,tj+i)

+ 3f(Y+ 1 ,tt 1 ) + 1f(Y*+1 tj+l1]
3 22 6 i

where
At

Y, + -f(Y,,t 3 )

*!* At 3+ Yj + - fYj+'tti+.!)

Yj+1= Ya + Atf(Y+ 1 7 t+')

The intermediate values y+, y*+ , and Yj+, must be computed in the order

given since they are interdependent [15].

7. SUBROUTINE RHS

This subroutine computes the right hand side of the pressure equation

for the three flow areas. It calls SUBROUTINES AREA, VOLUME, AND

DERIVATIVE.

8. SUBROUTINE INCOMPRESSIBLE

This subroutine computes the velocity for the three flow areas by assuming

an incompressible fluid. This case is appropriate for heavily lubricated gears.

SUBROUTINES AREA and VOLUME are called.

9. SUBROUTINE BISEC

This subroutine determines the root of an equation that falls within the given

limits. It is called by the SUBROUTINE VOLUME to determine the point where

the involute portion of the driving gear intersects the addendum circle of the

pinion.
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10. SUBROUTINE VOLUME

This subroutine computes the volume of space between the driver and the

driven teeth. The subroutine is broken up into various integral sets to compute

the area of the driving gear that overlaps into the meshing region. This area

is used to determine the two-dimensional plane area which is multiplied by the

constant face width to give a volume. SUBROUTINES BISEC and SUBTRACT

are called.

11. SUBROUTINE APPROX

This subroutine determines the end and beginning points for the cubic

fit to the approximation for the area to subtract when the SUBROUTINE

SUBTRACT method is no longer valid. The cubic fit used was f(x) =

a o + ajx -- a2X2 + a 3 x 3 .

12. SUBROUTINE SUBTRACT

This subroutine computes the amount of area to be excluded from the 2-D

plane area when determining the volume.

13. LISTFILE

The input data is echoed first followed by the computed gear and pinion

geometry. The remainder of the output consists of the computed velocities.

The first column i ,ie percent mesh position. The incompressible flow columns

are designated INC E, INC T, INC C and the compressible flow columns are

COMP E, COMP T, COMP C and MACH E, MACH T, MACH C where E

corresponds to end flow, T for teeth flow, and C for combined flow.



99

14. INPUT FILE

The following variables are read free format one per line into the program:

number of gear teeth

pitch of the gear

pressure angle of the gear in degrees

pressure angle of the pinion in degrees

pitch of the pinion

number of pinion teeth

coarse or fine pitch gear (coarse=1,fine=2)

coarse or fine pitch pinion (coarse=1,fine-2)

the maximum iterations in the bisec routine

the convergence criterion for bisection

face width of gear in inches

face width of pinion in inches

convergence criterion for derivative calculations

density of air in 1bm/ft 3

pressure of the ambient Ibj/in2

dimensional gravitational constant in lbmin/lbf Sec2

pitch line velocity ft/s

ratio of specific heats

increment of change AO in degrees

total number of loops executed

counter for printing results

the number of iterations between write statements

backlash in inches
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Read input data file

Echo data

Call Subroutine GEOCAL

for the gear and pinion

geometry clculations

F Initialize Pressure, Temperature

and Velocity conditions

Do loop

to increment the position

of the driving gear

Call Subroutine INCOMPRESSIBLE

to compute velocity for the three

flow areas-endflow,teeth flow,

and combined flow

return with values

Call Subroutine COMPRESSIBLE

return with velocities, pressures,

temperatures, and mach numbers

for the three flow areas

continue

stop anden
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